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Abstract—NOVA, a state-of-the-art NVM-based file system, is
known to have scalability bottlenecks when multiple I/O threads
read/write data simultaneously. Recent studies have identified
the cause as the coarse-grained lock adopted by NOVA to
provide consistency, and proposed fine-grained range-based locks
to improve the scalability of NOVA. However, these variants
of NOVA only scale on Uniform Memory Access (UMA) ar-
chitecture and do not scale on Non-Uniform Memory Access
(NUMA) architecture. This is because NOVA has no NUMA-
aware memory allocation policy and still uses non-scalable file
data structures. In this paper, we propose a NUMA-aware NOVA
file system which virtualizes the NVM devices located across
NUMA nodes so that they can be used as a single address
space. The proposed file system adopts a local-first placement
policy where file data and metadata are placed preferentially on
the local NVM device to reduce the remote access problem. In
addition, the lock-free per-core data structures proposed in this
file system allow data to be updated concurrently while mitigating
the remote memory access. Extensive evaluations show that our
NUMA-aware NOVA for parallel writing is scalable with respect
to the increased core count and outperforms vanilla NOVA by
2.56-19.18 times.

I. INTRODUCTION

In recent few years, several file systems have been pro-
posed for Non-Volatile Memory (NVM) devices, such as
3D-Xpoint [1]-[4]. Among them, NOVA [2], a state-of-the-
art NVM file system, ensures higher throughput and lower
read-write latency than block-based file systems. NOVA also
ensures consistency of file data and metadata through its log-
structured design. NOVA adopts per-inode logging which logs
metadata for every write operation. However, NOVA does not
provide any degree of scalability in terms of I/O throughput
when concurrent shared file I/Os are performed [5], [6]. This is
mainly due to the coarse-grained locks on inodes to guarantee
consistency of its per-inode logs, which negates the benefits
of concurrent nature of NOVA and high-performance NVM
devices.

To solve the scalability issue due to low concurrency caused
by coarse-grained inode lock in NOVA, it has been suggested
to use a fine-grained range based Readers-Writer (RW) lock,
referred as range lock instead of the coarse-grained mutex
locks for inodes [5S], [7], [8]. The range lock-based NOVA
succeeds in scaling performance for shared file I/Os. However,
this fine-grained lock solution applies only to the Uniform
Memory Access (UMA) architecture and does not scale on
Non-Uniform Memory Access (NUMA) architecture. This is
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Fig. 1: Physical address space configuration method of a
NUMA server where NVM is installed on each node.

because NOVA is not designed for NUMA environment. For
example, NOVA places all file data and metadata on a single
NUMA node [9]. Therefore, threads running on other nodes
must access the file via remote memory access, which leads
to huge performance loss.

In this paper, we propose a NUMA-aware NOVA to show
the scalability on the NUMA-based manycore servers. Our
work has the following contributions:

« Virtualizing NVM Devices: In order to store files across
multiple NUMA nodes, the non-contiguous physical ad-
dress space of NVMs located at multiple nodes is virtual-
ized into one logical address space as shown in Figure 1.
We also propose a local first write policy to place file data
and metadata preferentially on the NVM device allocated
to the CPU where the thread is executing.

o Lock-Free Per-Core Data Structures: We suggest lock-
free per-core data structures such as per-inode log using
Global Log and Local Log to ensure the scalability by
allowing multiple threads to perform write operations
concurrently.

o Evaluation of Intel Optane DC Manycore Servers:
We implemented our proposed ideas in Linux environ-
ment. Our extensive evaluations with an Intel Optane DC
manycore server show that our proposed NUMA-aware
NOVA for parallel writing is scalable with respect to
the increased number of cores and outperforms vanilla
NOVA by 2.56-19.18 times. In terms of parallel read,
the NUMA-aware NOVA is scalable up to 56 cores and
outperforms vanilla NOVA by 2.54 times.

II. BACKGROUND AND MOTIVATION

A. NOVA File System

NOVA is a state-of-the-art NVM file system. It adopts
log-structure design to guarantee consistency and records the
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Fig. 2: Write I/O flow of NOVA file system.

modifications in the per-inode log at NVM in a Copy-On-
Write (COW) manner. The core data structures used in NOVA
are shown in Figure 2. The index tree in DRAM is maintained
for each file and utilized to retrieve data pages corresponding
to the file offset of the read/write operation. The Inode in
NOVA is of 128 B stored in NVM and includes head and
tail pointers for the start and end of the log entries stored in
the inode log. The inode log is a series of 4 KB log pages.
Each log entry is 64 B while the user data is stored in 4 KB
data pages and is allocated in NVM by per-CPU memory page
allocator.

The overall write I/O flow of NOVA is shown in Figure 2
where a user requests to write data in the range of 10 KB-
14 KB of a file. At step 1, NOVA will allocates two new data
pages as the unit of 4 KB write operation and the content of
previous data page (Data 2) is copied to the newly allocated
pages, and user data is overwritten in the range to be updated.
At step 2, the corresponding log entry is appended to the inode
log using the tail pointer from inode as it points to the last
committed log entry. Thus, the new log entry is written right
after the tail pointer. If the tail pointer is at the last log entry,
a new log page is allocated and the log entry is written to the
new log page. At step 3, the tail pointer is updated to reflect
the position of the new log entry. Finally at step 4, the index
tree in DRAM is updated such that the new index node points
to the new log entry and the NOVA’s atomic write operation
is finished.

B. Scalability Limitation with Range-based RW Lock

NOVA uses per-inode locks to avoid inconsistent cases
between multiple threads when they write data on the same
file at different offsets or they update the log at the same time.
For instance, suppose that thread 7'1 and 7'2 write on the same
file at the same time and there is no per-inode lock. If 7T'1 is
writing a log entry (step 2 of Figure 2) but 72 appends a log
entry before T'1 updates the tail pointer (step 3 of Figure 2),
the log entry written by 7'1 can be overwritten by 72’s log
entry. As a result, this will lead to the lose of 7'1’s data. In our
recent work [5], we identified that the NOVA’s per-inode lock
becomes the bottleneck for parallel I/O as it serializes threads
that try to read or write the same file. Then we proposed a fine-
grained range-based RW lock. The proposed range lock first
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Fig. 3: An example of the NOVA with NUMA-aware memory
management.

checks the range of the write request; if write ranges do not
overlap, the lock can be acquired and the user data (step 1 of
Figure 2) can be written concurrently. While the fine-grained
range-based RW lock ensures file system scalability in the
UMA architecture, it does not help in scaling performance in
the NUMA architecture.

ITII. NUMA-AWARE PER-CPU LOG STRUCTURE DESIGN
A. NOVA file system on Manycore servers

Currently, manycore servers are mostly based on NUMA
architecture, and the system applications being designed for
manycore machines are required to be aware of their internal
architectures to fully exploit their performance. However,
NOVA is an NVM based file system designed to reside on
a single NVM space. Figure 1 illustrates the non-contiguous
address space configuration of multiple NVM devices installed
on a NUMA-based manycore machine. Since only NVM space
on a single NUMA node can be used to place data and log
pages in current NOVA file system, threads executing on other
NUMA nodes will cause remote memory access. This becomes
the scalability bottleneck. In what follows, we explain how
we mitigate these challenges and how we design the NUMA-
aware file system.

B. A Unification of NVM Devices

The NUMA-aware file system can reduce remote memory
accesses by distributing files over multiple NUMA nodes. In
order to design the NUMA-aware NOVA, we have virtualized
the non-contiguous NVM address space from multiple NUMA
nodes to a single contiguous virtual address space. For this, we
import the NVM devices’ information from all NUMA nodes
to the superblock when mounting the file system. As a result,
the physical addresses of NVM devices are linearly mapped,
which allows NUMA-aware NOVA to easily place user data
and metadata in multiple NVM devices.

To mitigate the remote memory accesses, a memory alloca-
tion policy is required. In our proposed NUMA-aware NOVA,
we introduced a local first write policy, where threads give
preference to write files to a local NVM device. Figure 3 shows
the proposed NUMA-aware memory allocation policy with
two NUMA nodes. In this case, threads running on CPU-0 and
CPU-1 prefer to write files in physical address space ranging
from 0x0040 to 0x0140, while CPU-2 and CPU-3 write over
the range from 0x0180 to 0x0280. Also, NUMA-aware NOVA
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Fig. 4: NOVA with per-CPU log structure.

divides the entire logical address space based on the size of
NVM devices and creates per NUMA node partitions. Further,
the partitions are divided into the number of cores in each
node and are managed by the per-CPU memory allocator in
NOVA. Data and log pages for each thread are allocated from
the region allocated to the core on which the thread is running.
This allows each I/O thread to allocate data or log pages from
the local NVM space first.

C. Lock-Free Per-CPU log structure

File data structures shared among various threads become
a major cause of scalability bottleneck for the file system in
a NUMA-based system. If files are shared among multiple
threads running on different NUMA nodes, it leads to huge
performance loss due to frequent remote memory access.
Furthermore, since the shared resources are protected by
locks to ensure consistency, concurrent update operations are
serialized. Therefore, we propose per-CPU data structures
for scalable NOVA and extend the NOVA'’s per-inode log
structure to be a lock-free per-CPU log.

Figure 4 shows the proposed lock-free per-CPU log struc-
ture for NOVA, where we introduce two new persistent data
structures: Global Log and Local Log. The Global Log is
a pointer array for each inode that indexes each CPU and
corresponding Local Log pointer as shown in Figure 4. The
Local Log is a per-CPU private data structure with head and
tail pointers for per-CPU logs. These two data structures allow
multiple threads from different NUMA nodes to perform file
operations concurrently and improve the scalability.

The new write flow in the NUMA-aware NOVA can be
as follows. Suppose that three threads want to write data to
a shared file on CPU cores O, 1, and 2. Then, each thread
allocates a data page or a log page using its core’s memory
allocator based on the local first allocation policy from the
local NVM device. As a result, threads can update their data
and log pages concurrently through local memory access.
Additionally, they can append a log entry to the log page
after each thread updates the tail pointer of Local Log with
reference to Global Log. Finally, the index tree of DRAM
is updated to point to the new log entries similar to the
existing NOVA, and the parallel write operation of NUMA-
aware NOVA completes.
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Fig. 5: The result of bandwidth measurement as the number of
cores increases in Testbed. Threads are bound to CPU, having
one-to-one mapping between them.

IV. EXPERIMENTAL RESULTS
A. Intel Optane DC PM Server

To evaluate the scalability of NOVA, we conducted experi-
ments on a Manycore server equipped with Intel Optane DC
Persistent Memory (PM) modules. The detailed specifications
of the Testbed are shown in Table I. Each socket is equipped
with 6 Intel Optane DC PM modules. The hardware setup used
in the experiments is as follows. The memory space of the PM
modules within a single socket is provided by the operating
system as a contiguous physical address space. In this setup,
the access to the PM is interleaved across 6 PM modules in a
single socket. However, the server does not allow to aggregate
the PM modules across sockets.

To understand the performance of Intel Optane DC PM
modules, we measured the bandwidth of each memory module
of our Testbed by increasing the number of cores with read-
only and write-only workloads. For the experiments, we used
the Memory Latency Checker (MLC) tool by Intel [10]. The
MLC tool measures the peak bandwidth for workloads, in
which multiple threads sequentially read or write data from
or to memory devices. In particular, for accurate memory
latency measurements, the MLC tool disables the hardware
pre-fetcher.

Figure 5(a) shows the measured write bandwidth of PM. In
the figure, Optane DC(src, dst) indicates the cores in the socket
number src performing I/O operations when they access the
memory buffer allocated to Optane DC PM in socket number
dst. Optane DC(0,0) reaches the peak bandwidth of 12.3 GB/s
on 4 cores but it gradually degrades with the increasing
number of cores. On the other hand, the maximum bandwidth
of Optane DC(0,1) reaches at the peak of 6.5 GB/s on 8
cores, but it also continues to decrease with the increasing

TABLE I: Intel Optane DC PM Server.

CPU Intel(R) Xeon(R) Platinum 8280M v2 2.70GHz
CPU Nodes (#): 2, Cores per Node (#): 28
Memory DRAMs per Node (#): 6, DDR4, 64 GB * 12 (=768GB)
PM Intel Optane DC Persistent Memory
PMs per Node (#): 6, 128 GB * 12 (=1.5TB)
oS Linux kernel 4.13.0
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Fig. 6: Evaluation of the scalability of the NOVA file system according to the parallel I/O pattern on the Intel Optane DC
server. Threads are bound to CPU, having one-to-one mapping between them.

number of cores. It is assumed that the write bandwidth is
reduced by the hardware limitation of the Optane DC PM
server as described in [11]. Figure 5(b) shows the measured
read bandwidth of PM. Optane DC(0,0) bandwidth increases
linearly as the number of cores increases, resulting in a
maximum of 40.04 GB/s on 28 cores. The bandwidth of
Optane DC(0,1) increases as the number of cores increases,
resulting in a maximum of 15 GB/s on 8 cores. However,
the bandwidth drops after that due to the same hardware
limitations.

In short, we have the following observations from Figure 5.
First, the read bandwidth of PM is higher than the write
bandwidth. The read bandwidths of Optane DC(0,0) and
Optane DC(0,1) are 3.24x and 2.31x higher than those of
the corresponding write bandwidths, respectively. Second, the
degree of the NUMA effect in PM is high. In terms of write,
Optane DC(0,0) shows 1.86x higher write bandwidth on 8
cores than Optane DC(0,1), and 16.5x higher write bandwidth
on 28 cores. In terms of reading, the read bandwidth of Optane
DC(0,0) on 8 core is 1.98x higher than that of Optane DC(0,1)
and 35.7x higher on the 28 core.

B. Evaluation of NUMA-aware NOVA

For the evaluation, we implemented three versions of
NOVA:

e NOVA(V) (S81): Vanilla NOVA.

e NOVA(RL) (S2): NOVA using a range lock.

o NOVA(RL+NUMA) (83): NOVA using a range lock with
NUMA-aware design.

The FxMark benchmark [6] that can generate various work-
load patterns is used for the evaluations. Specifically, we used
three parallel I/O workloads, DWOM, DWOL, and DRBL.
The DWOM workload performs multi-threaded shared file
writes where multiple threads write to a shared file (N-to-1
write). The DWOL workload performs multi-threaded private
file writes where multiple threads write to their private files
(N-to-N write). The DRBL workload performs multi-threaded
private file reads where multiple threads read the files after
writing the files (N-to-N read).

Figure 6(a) verifies the scalability of NOVA(RL) using the
DWOM workload in the UMA architecture, while NOVA(V)

does not provide any scalability due to the per-inode lock.
NOVA(V) shows the peak bandwidth of 0.8 GB/s on 1 core,
and it decreases slightly as the number of cores increases. On
the other hand, NOVA(RL) shows its maximum throughput
of slightly higher than 2 GB/s on 8 cores and maintains the
throughput up to 28 cores. This is because the coarse-grained
lock is replaced by the fine-grained range lock and thus shared
files can be updated in parallel. However, the throughput does
not scale after 8 cores for NOVA(RL) as the file log cannot
be updated concurrently.

Figure 6(b) shows the results using the DWOM workload in
the NUMA architecture. NOVA(V) and NOVA(RL) show the
same results as those in the UMA environment. Since these
are not NUMA-aware, there is no performance improvement
in the NUMA-based Manycore servers. On the other hand,
NOVA(RL+NUMA) shows the scalable performance up to 48
cores due to the per-CPU log and local first write policy. The
throughput of NOVA(RL+NUMA) increases up to 17.2 GB/s
on 48 cores, which exceeds the Testbed’s NUMA boundary
of 28 cores. In addition, NOVA(RL+NUMA) shows high
parallelism than NOVA(RL) despite NUMA-effect due to
the lock-free data structure. For instance, the throughput of
NOVA(RL+NUMA) on 16 cores is 31% higher than that of
NOVA(RL).

Figure 6(c) presents the results using the DWOL workload
in the NUMA architecture. As a range lock is basically de-
signed to improve the DWOM performance, the performance
of NOVA(RL) using the DWOL workload is not much differ-
ent from that of NOVA(V). It scales up to 16 cores, but after
that, it slightly decreases as the number of cores increases.
We suspect that the hardware bottleneck of the Optane DC
PM server shown in Figure 5 causes this problem. Besides,
the performance after 28 cores continues to decrease due
to the file arrangement without NUMA-awareness. However,
NOVA(RL+NUMA) scales up to 48 cores with the maximum
throughput of 17.69 GB/s similar to the experiments using the
DWOM workload.

Figure 6(d) compares the results using the DRBL workload
in the NUMA architecture. In terms of parallel read, all ver-
sions of the NOVA scale up to 28 cores. However, NOVA(V)
and NOVA(RL) do not scale after 28 cores. In the case
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of NOVA(V), the per-inode lock degrades the performance
due to the single reader counter problem [12]. On the other
hand, NOVA(RL) does not perform well due to the NUMA-
effect because all files are placed only at node 0. Finally,
NOVA(RL+NUMA) places each thread’s file in the local NVM
with local write first policy. This allows threads to read files
with local memory access. As a result, NOVA(RL+NUMA)
scales up to 56 cores and shows the peak bandwidth of
49.32 GB/s on 56 cores.

V. CONCLUSION

In this paper, we developed a NUMA-aware NOVA file sys-
tem to support file system scalability on Manycore machines.
Specifically, we first virtualized the NVM modules of several
NUMA nodes and reduced the number of remote accesses that
can occur when performing parallel I/O through the local write
first policy. Second, we extended the NOVA'’s per-inode log to
the lock-free per-CPU log. Extensive evaluations have shown
that NUMA-aware NOVA is scalable for parallel writing as
the number of cores increases on Intel Optane DC Manycore
machines, and shows 19.18 times higher write throughput than
vanilla NOVA.
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